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Abstract

Breast tumor segmentation provides accurate tumor boundary, and serves as a key step toward 

further cancer quantification. Although deep learning-based approaches have been proposed and 

achieved promising results, existing approaches have difficulty in detecting small breast tumors. 

The capacity to detecting small tumors is particularly important in finding early stage cancers 

using computer-aided diagnosis (CAD) systems. In this paper, we propose a novel deep learning 

architecture called Small Tumor-Aware Network (STAN), to improve the performance of 

segmenting tumors with different size. The new architecture integrates both rich context 

information and high-resolution image features. We validate the proposed approach using seven 

quantitative metrics on two public breast ultrasound datasets. The proposed approach 

outperformed the state-of-the-art approaches in segmenting small breast tumors.

Index Term—

breast ultrasound; small tumor segmentation; deep learning; multi-scale features; STAN

1. INTRODUCTION

According to the National Center for Health Statistics [1], in 2019, United States is expected 

to have 891,480 new women cancer cases, where 30% of the all cases will be breast cancer. 

Early detection is the key to improving the survival rate of breast cancer; the five-year 

relative survival rate is 98% if the breast cancer is detected and treated at the early stages, 

and only 22% in cases with advanced-stage cancers. Computer-aided diagnosis (CAD) 

systems have been proposed to detect breast cancer automatically. In these systems, breast 

tumor segmentation is a key step that help accurate tumor quantification. Tremendous 

number of breast tumor segmentation approaches have been proposed in the last two 

decades; and some approaches have achieved promising overall performance on their private 

datasets. However, most approaches cannot segment small tumors accurately. Breast 

ultrasound (BUS) images are used in this study since ultrasound imaging is noninvasive, 

painless, nonradioactive and cost-effective.

In the last two decades, breast tumor segmentation has been an active research area. Existing 

approaches can be classified into traditional approaches and deep learning approaches. 
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Various traditional image processing approaches have been applied to BUS image 

segmentation, such as thresholding [2–5], region growing [6,7], and watershed [8]. However, 

the traditional methods are not robust due to poor scalability and sensitivity to noise. Refer 

to [20] for a detailed review of BUS segmentation approaches.

Deep learning approaches [9–12,21] have recently demonstrated state-of-the-art 

performance for breast ultrasound segmentation. Cheng et al. [10] employed a stacked 

denoising auto-encoder (SDAE) to diagnose breast ultrasound lesions and lung CT nodules. 

The information extension strategy was used in [11], where the wavelet feature was added to 

the original image to train a fully convolutional network (FCN). Breast anatomy information 

was applied to the Conditional Random Fields (CRFs) to enhance the segmentation 

performance. In addition, Huyanh et al. [12] used transfer learning for classification of BUS 

images, however, the proposed model does not perform tumor segmentation. Similarly, Yap 

et al. [9] used three different deep learning methods, a patch-based LeNet, a U-Net, and a 

transfer learning approach with a pre-trained FCN-AlexNet on two different datasets to 

segment BUS images. However, they failed to achieved good performance for segmenting 

small tumors. Furthermore, a very deep CNN architecture GoogleNet Inception v2 in [13] is 

used for the classification task, to distinguish between benign and malignant tumors. The 

results showed that the CNN model had better or equal diagnostic performance compared to 

radiologists. Moreover, in order to focus on regions with high saliency values, the method in 

[21] integrates radiologists’ visual attention for BUS segmentation.

In this paper, our results indicate that the three state-of-art models (FCN-AlexNet, SegNet, 

and regular Unet) have difficulty in detecting small tumors (Fig.1). We propose a novel 

architecture based on the core of U-Net architecture to solve the current issue of segmenting 

small tumors in breast ultrasound images. The method is validated using two public datasets. 

The experimental results demonstrate enhanced ability of the proposed model for small 

tumor detection in comparison to existing methods.

2. PROPOSED METHOD

The proposed method is based on one key observation: the size of breast tumors varies 

dramatically among patients; and existing deep neural networks that use fixed kernel size 

cannot detect small breast tumors accurately. To overcome this problem, we propose the 

Small Tumor-Aware Network (STAN) to extract and fuse image context information at 

different scales. STAN constructs feature maps using kernels with three different sizes at 

each convolutional layer in the encoder. Such feature maps carry multiscale context 

information and preserve fine-grained tumor location information. Consequently, STAN 

improves the performance of breast tumor segmentation, especially for small tumors. Fig. 2 

illustrates the overall architecture of STAN.

2.1 STAN Architecture

The size of the receptive field is a crucial issue in deep neural networks, because the output 

must response to an appropriate size of regions to capture objects with different sizes. There 

are two main ways to tune the size of the receptive field: 1) downsampling; and 2) stacking 

more layers. The two methods can only increase the receptive field, and are suitable for 
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segmenting large objects. In BUS image segmentation, a large receptive field will result in 

high false positives. Therefore, our goal is to avoid stacking too many layers with large 

kernel size, and design an architecture that has different sizes of the receptive field.

The proposed approach has a similar architecture as the general U-Net: i.e., it contains a 

contracting and expanding stage with skipping links. Unlike the U-Net architecture, where 

the contracting stage has only one branch, the proposed network comprises two encoder 

branches. In addition, the proposed network has three skipping links (the green links in Fig. 

2) between the encoder and decoder blocks, which allows retaining and propagating high-

resolution features to the decoder. E.g., for the ith block, we denote the output of the two 

encoder branches as Ci,1 and Ci,2, and the next block will output

Ci + 1, 1 = p conv3 conv3 Ci, 1 (1)

Ci + 1, 2 = p conv3 conv1 Ci, 2 ⊕ conv3 conv5 Ci, 2 (2)

where convn denotes the convolutional operation with kernel size n × n. C0,1 and C0,2 are 

used to denote an input image to the network, where C0,1 = C0,2; p denotes the max pooling 

operation; and, for the central layer, C5,1 and C5,2 are

C5 = C5, 1 = C5, 2 = conv5 conv5 C4, 1 ⊕ conv1 conv1 C4, 2
⊕ conv3 conv3 C4, 2

(3)

In Eqs. (1–3), ⊕ denotes the concatenation operation. From the blocks one to four, each 

block applies kernels with three different sizes, that is 1×1, 3×3 and 5×5, and captures image 

features at three different scales. In general, when the dimensions of the input images to the 

neural network are reduced extremely via down-sampling layers, the network performs 

poorly because the network loses vast amount of information, recognized as a 

representational bottleneck [14]. To solve the representational bottleneck issue, the network-

in-network architecture [14] used convolutional kernels of size 1×1 followed by a ReLU 

layer to introduce more no-linearity. Motivated by this approach, in the second branch of the 

encoder, we introduced 1×1 kernels to increase the representational power of the model.

The original U-Net architecture copies features after the second convolutional layer in the 

encoder part and concatenates the features to the corresponding layer in the decoder section. 

In our proposed model, the skipping links involve the output of the first convolution in each 

layer merged to the result of the first convolution in the corresponding decoder part. In 

addition, a skipping layer from the merging of the two new layers after the second 

convolution in the encoder merges to the result of the second convolution in the decoder 

part. Accordingly, the expanding stage is enriched by fusing feature maps from the blocks in 

the two encoders. Let Ui (i = 5, 4, 3, 2, 1) be the output of ith up-sampling block; and the 

output of the next bock is given by

Ui − 1 = conv conv DeConv Ui ⊕ Ci − 1, 1 ⊕ conv5 Ci, 1 ⊕ Ci − 1, 2 (4)
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In Eq.(4), U5 is equal to C5 from the central layer, and DeConv denotes the deconvolution 

operation. In addition, since the layer five does not involve pooling, we discarded the 

pooling layers from the skipping block. The original skipping layers stay the same, where 

we combine it to the up-sampling layer before the first convolutional layer.

2.2 Implementation and Training

The input images and their corresponding ground truths are resized to 256×256. Since the 

datasets are of small size, we applied image width and height shift to augment the training 

set. The batch size is 4, and the number of training epochs is set to 50. Adam optimizer [9] is 

utilized for training the proposed network, and the initial learning rate is set to 0.0001.

Let P = pi i = 1
N  and G = gi i = 1

N  be the output of the final pixel-wise sigmoid layer and the 

ground truth, respectively. The loss function is computed by using discrete dice loss [16]:

Ldice = 1 −
1 + 2∑i

N pigi
1 + ∑i

N pi2 + ∑i
N gi2

3. EXPERIMENTAL RESULTS

3.1. Dataset, metrics and setup

We use two publicly available datasets to validate the performance of the proposed 

approach, BUSIS dataset [17] and Dataset B [9]. The BUSIS dataset contains 562 images 

from three hospitals using GE VIVID 7, LOGIQ E9, Hitachi EUB-6500, Philips iU22, and 

Siemens ACUSON S2000. The Dataset B has 163 breast ultrasound images, and the UDIAT 

Diagnostic Centre of the Parc Taulí Corporation, Sabadell (Spain) collected the images using 

Siemens ACUSON Sequoia C512 system with 17L5 linear array transducer.

Both area and boundary metrics are used to evaluate the segmentation results. The metrics 

are true positive ratio (TPR), false positive ratio (FPR), Jaccard index (JI), dice’s coefficient 

(DSC), area error ratio (AER), Hausdorf error (HE) and mean absolute error (MAE). The 

performance of the proposed method is compared with the SegNet [18], FCN-AlexNet [19], 

and U-Net [15]. The FCN-AlexNet is pre-trained using the ImageNet, and all other 

approaches are trained from scratch. We employ 5-fold cross-validation to evaluate the test 

performance of all methods.

3.2. Overall Performance

The overall quantitative results are shown in Table 1, where the proposed STAN method 

outperformed the other three approaches in six metrics on the two datasets. FCN-AlexNet, 

SegNet, and U-Net produced high TPRs on the BUSIS dataset, and FCN-AlexNet and 

SegNet obtained higher TPRs than the proposed approach on the Dataset B. However, they 

achieved high TPR at the cost of large false positive ratio (FPR) shown in the fourth column 

of Table 1.
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Fig. 3 compares the segmentation results of SegNet, FCN-AlexNet, U-Net, and the proposed 

STAN. Fig. 3(b) shows the corresponding ground truth of the original BUS images in Fig. 

3(a). As shown in the first row, FCN-AlexNet, SegNet, and U-Net produce high false 

positives, while the proposed STAN can accurately segment the tumors. In the second row of 

Fig. 3, the FCN-AlexNet has high false positives compared to the ground truth; and both the 

SegNet and U-Net fail to detect the tumor.

3.3. Small Tumor Segmentation

In this section, we evaluate the performance of four approaches in segmenting small tumors. 

The criterion to select small tumors is the length of the longest axis of a tumor region, and 

the length threshold is set to 120 pixels. The physic sizes of tumors are not used because 

they are unavailable for most images in the two datasets. 76 and 49 images are selected form 

the BUSIS and Dataset B, respectively.

As shown in Table 2, on the two datasets, all metrics except the TPR of the proposed STAN 

are better than those of FCN-AlexNet, SegNet, and U-Net. The FPR of the FCN-AlexNet on 

the small dataset (0.767) of is more than twice as its original FPR in Table 1(0.336). All 

other three approach generate high FPRs (FCN-AlexNet: 1.86, SegNet: 1.45 and U-Net: 

0.68) for small tumors in the Dataset B. The third and fourth rows of Fig. 3 show 

segmentation results of a small tumor, the FCN-AlexNet and U-Net detect no tumor; while 

the SegNet produced high false positive. In the fourth row, the FCN-AlexNet and U-Net 

generated high false positive, and the SegNet only found a small part of the tumor.

4. CONCLUSION

In this paper, we proposed the Small Tumor-Aware Network (STAN) to overcome 

challenges in breast tumor early detection. The STAN has two encoder branches that extract 

and fuse image context information at different scales. The model constructs feature maps 

using kernels with three different sizes at each convolutional layer. These feature maps carry 

multiscale context information and preserve fine-grained tumor location information. The 

proposed STAN achieved the state-of-the-art overall performance on two public datasets, 

and outperformed the other three segmentation approaches in segmenting small tumors.

In the future, we will focus on improving the robustness of the proposed STAN.
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Fig. 1. 
Performance of state-of-the-art approaches for segmenting breast tumors with different sizes.
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Fig. 2. 
The STAN architecture. The block sizes do not represent the actual feature maps.
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Fig. 3. 
Small tumor segmentation.
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