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ABSTRACT
Existing deep neural networks for histopathology image syn-
thesis cannot generate image styles that align with different
organs, and cannot produce accurate boundaries of clustered
nuclei. To address these issues, we propose a style-guided
instance-adaptive normalization (SIAN) approach to synthe-
size realistic color distributions and textures for histopathol-
ogy images from different organs. SIAN contains four phases,
semantization, stylization, instantiation, and modulation. The
first two phases synthesize image semantics and styles by
using semantic maps and learned image style vectors. The
instantiation module integrates geometrical and topological
information and generates accurate nuclei boundaries. We
validate the proposed approach on a multiple-organ dataset,
Extensive experimental results demonstrate that the proposed
method generates more realistic histopathology images than
four state-of-the-art approaches for five organs. By incorpo-
rating synthetic images from the proposed approach to model
training, an instance segmentation network can achieve state-
of-the-art performance.

Index Terms— Histopathology image synthesis, style
manipulation, nuclei annotation

1. INTRODUCTION

Histopathology image analysis has achieved great success
in automatic tissue segmentation [1, 2] and cancer grading
[3]. Existing deep learning-based methods require large
fully-annotated datasets during the training stage, but current
annotated datasets are relatively small. For example, only
tens of image patches were used in [1, 4, 5, 6]. With large
annotated datasets, we could train more accurate and reliable
models. However, it is expensive to annotate large datasets
for histopathology images, because each image may contain
more than tens of thousands of nuclei.

To overcome the challenge, image synthesis is adopted.
Recent works have demonstrated that high-quality synthetic
images could improve the overall performance in histopathol-
ogy image analysis [7, 8, 9]. However, these methods gen-
erated images only for single cancer or cancers with shared
similarity, e.g., colorectal cancer [7, 8], lymph node [9]; thus
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Fig. 1: Examples of image synthesis for multiple organs. The
top row shows real histopathology images from six organs.
The second and third rows are synthesized images generated
using the proposed approach (SIAN).

their models cannot generate different image styles for differ-
ent cancer types. In practice, H&E-stained images for cancers
from different organs could have large color and texture vari-
ances both in foreground nuclei and background stroma (first
row of Fig. 1). Therefore, it is important to have the net-
work to generate histopathology images well in various stain
distribution across multiple organs.

Recently, neural style transfer (NSF) methods have been
widely exploited in many natural image synthesis tasks for
manipulating image styles [10, 11, 12], they aim to learn the
style from a reference image and apply it to the target image.
SPADE [11] extended the AdaIN norm [10] into the spatially-
adaptive manner for obtaining semantic alignments and used
the encoded style vector at the beginning of a network, which
enabled simultaneously style manipulation and semantic im-
age synthesis. However, most existing histopathology image
synthesis methods applied semantic layouts as the network
input to learn object-level image appearance [11, 7, 8]. In
histopathology image analysis, a large amount of clustered
and overlapped objects may have the same semantic class la-
bel, which makes it difficult to generate accurate boundaries
among clustered objects.

To alleviate the above issues, we proposed a style-guided
instance-adaptive normalization (SIAN) to combine image
style vector with instance layout for modulating the GAN
generator. The learned transformation can effectively prop-
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Fig. 2: Architecture of the proposed method. The encoder learns style vectors from a referred image; and the SIAN blocks
integrate image style (S), semantic map (M), directional map (P), and distance map (Q) into a generator network.

agate the network to learn style factors for synthesizing
histopathology images across various color distributions; the
captured instance features can preserve geometrical and topo-
logical information for generating accurate densely-clustered
nuclei. SIAN can generate style images from a specific organ
and synthesize histopathology images with a similar style.

2. PROPOSED METHOD

2.1. Architecture and learning objectives

Fig. 2 shows the overall architecture of the proposed genera-
tor. The proposed generator has seven SIAN residual blocks
(SIAN ResBlk), and each SIAN ResBlk is followed by a up-
sampling layer. Each SIAN ResBlk contains two consecutive
SIAN blocks, and each is followed by ReLU and convolu-
tional layers. The skip connection has a SIAN block, a ReLU,
and a convolutional layer. All input maps are down-sampled
to the same height and width with the corresponding feature
maps in the generator. We follow the same encoder and dis-
criminator architectures described in [11]. The overall loss
function contains five loss components, and is defined by [11]

LSIAN = LGAN +λ1LF +λ2LP +λ3LKLD+λ4Lreg (1)

where LGAN is the hinge-based conditional adversarial loss
[13], LF is the feature matching loss in the multi-scale dis-
criminator [14], LP is the perceptual loss [15] for minimizing
the features between real and synthetic images, and LKLD is
the KL divergence loss [16] for the encoder to constrain the
style vector to the standard Gaussian distribution. λ1, λ2, λ3,
and λ4 controls the contributions of different loss terms.

2.2. Style-guided instance-adaptive normalization

We propose a new conditional normalization block, namely,
the Style-guided Instance-Adaptive Normalization (SIAN) to
learn instance-level features and integrate image styles for
cancers from different organs. Fig. 3 shows the details of the
SIAN block. The block has four phases: semantization, styl-
ization, instantiation, and modulation. The block takes four

Fig. 3: SIAN normalization. SIAN block takes four inputs:
semantic masks M, style vector S, directional mask P, and
distance mask Q for combining different features at multiple
phases in the block. ⊗ denotes element-wise multiplication,
and ⊕ is element-wise addition.

inputs besides image feature maps, i.e., semantic mask M,
style vector S, direction mask P, and distance mask Q. The
semantization phase embeds image semantics from the input
mask; the stylization creates a style matrix from a referred
image and integrates image semantics and style. The instan-
tiation phase uses direction and distance maps to distinguish
individual nuclei. The modulation phase learns the scale and
bias and integrates them into the network.

Let h denote the input activation of the current layer of the
proposed neural network with a batch size of N . Let H , W
and C denote the height, width, and channels of an activation
map in ith layer. The final modulated activation value (n ∈



N , c ∈ C, y ∈ H , x ∈W ) is defined as

γc,y,x(M,S,P,Q)
hn,c,y,x − µc

σc
+ βc,y,x(M,S,P,Q) (2)

where hn,c,y,x is the activation output before normalization;
the modulation parameter γc,y,x and βc,y,x are the element-
wise summation of modulation parameters of two branches,
i.e., γic,y,x + γjc,y,x and βi

c,y,x + βj
c,y,x. µc and σc are the

mean and standard deviation of the activation of the channel
c, respectively. In the SIAN block, the semantic layout first
passes to two convolutional layers, which split the semantic
information into two separate branches to learn the directional
features and distance features separately. The two branches
have the same architecture. In each branch, the convolutional
kernel first multiplies with the reshaped style vector, which
combines style factors in the block. After that, the instance
layouts (direction or distance) are fed through a 1 × 1 convo-
lutional layer and multiplied with the previous convolutional
layer. The next convolutional layer learns the compensation
of semantic, style, and instance features and then split into
two convolutional layers to learn the modulation parameters
(γ and β) spatially. Finally, those modulation parameters and
the output of batch normalization are integrated for accurate
histopathology image synthesis. All convolutional layers in
SIAN use the 3×3 kernel size with 128 filters.

Instance masks are applied to generate the semantic mask,
and nuclei directional and distance maps. The semantic map
is used to separate nuclei and stroma, and the directional and
distance maps are useful to demonstrate the boundaries and
centroids between two or more touching nuclei. We employed
the 2-bin direction mask [17] and Medial Axis (MA) distance
mask [18] as the instance descriptors. Direction map provides
important centroid and directional information of nuclei. MA
distance mask shows the distance between the nucleus bound-
ary to its skeleton while providing nuclei topological and ge-
ometrical features.

3. EXPERIMENTAL RESULTS

3.1. Dataset, metrics, and setting

Dataset. The experiments are conducted on the multi-organ
nuclei segmentation dataset (MoNuSeg) [4] which has 44
H&E stained histopathology image patches. Both the train-
ing and test sets contain images from six organs including
breast, liver, kidney, prostate, bladder, and colon; while the
training set includes stomach as the seventh organ, and the
testing set has brain images.

Evaluation metrics. We employed five metrics to eval-
uate the method performance for image synthesis, e.g., FID
[19], SSIM [20], DQ [21], SQ [21], and PQ [21]. We used two
metrics FID and SSIM to measure the distribution distance
and structural similarity between real images and synthetic
images, respectively; and used DQ, SQ, and PQ are utilized

Fig. 4: Visual comparison of histopathology image synthesis
for the MoNuSeg test set. (a) Image patches, (b) nuclei masks,
(c-e) results of Sharp-GAN, SPADE, and ours, respectively

to assess the nuclei segmentation performance. Specifically,
we run a pre-trained segmentation model (SegNet [22]) which
is trained on real images, and then test and evaluate using the
synthetic images. In addition, we show the visual comparison
of our synthetic images compared to other methods.

Implementation details. The input image size of our ap-
proach is 256×256. We used random flip, rotation and me-
dian blur for data augmentation. We use the ADAM optimizer
with the total training epochs of 50 and batch size of 8 to train
the network. The experiments are conducted on a NVIDIA
RTX 8000 GPU.

During inference, for the style encoder, we take an arbi-
trary histopathology image as input and output the encoded
style vectors. Then, the encoded style vectors together with
an arbitrary instance mask are input into the trained generator
network to produce histopathology images.

3.2. Image quality assessment

The proposed method is compared with four state-of-the-art
image synthesis models: pix2pix GAN [23], Sharp-GAN
[24], pix2pixHD [25], and SPADE [11] using FID, SSIM,
DQ, SQ, and PQ metrics. The quantitative results of differ-
ent approaches on the MoNuSeg test set are shown in Table
1. The proposed method outperforms the state-of-the-art
methods both in image reconstruction quality using SSIM
and FID, and segmentation quality using PQ, SQ and DQ.
In addition, we integrated instantiation phase (INST) only,
and the SIAN block with the style vectors (STYLE), all the
evaluation metrics are improved from the baseline SPADE.
Overall, we can conclude that our SIAN achieved the best
quantitative performance among other methods.

Fig. 4 compares the proposed method, Sharp-GAN [24],
and SPADE [11] using three examples. We noted that Sharp-
GAN cannot recover the texture and color distributions of
nuclei and stroma in real images, especially in the first and
second row. I.e., the synthetic nuclei have different appear-
ances from real nuclei, and their background stroma lacks
meaningful texture and color. SPADE achieved better per-



Methods FID↓ SSIM↑ DQ↑ SQ↑ PQ↑
pix2pix [23] 170.1 0.467 0.687 0.717 0.493
Sharp-GAN [24] 155.2 0.483 0.721 0.745 0.538
pix2pixHD [25] 186.3 0.479 0.750 0.753 0.566
SPADE [11] 134.6 0.488 0.705 0.738 0.552
INST 125.4 0.491 0.748 0.768 0.575
STYLE 116.5 0.506 0.743 0.769 0.571
SIAN 115.7 0.515 0.757 0.761 0.586

Table 1: Overall performance on MoNuSeg datasets with re-
construction metrics and segmentation metrics.

Fig. 5: Synthesis for clustered nuclei. First row: instance
masks (different colors represent different nuclei). Second
row: results of SPADE [11]. Third row: results of SIAN.

formance compared to Sharp-GAN, but the generated images
were not realistic. Our SIAN generates more realistic images
than SPADE and Sharp-GAN. SPADE used the semantic lay-
out as input, while our method used the instance layouts. As
shown in Figure 5, SPADE tends to generate blur and incor-
rect nuclei in the clustered region. Our approach produces
more accurate boundaries for clustered nuclei.

3.3. Multi-organ image synthesis

To evaluate synthetic images across multiple organs, we com-
pare the generation performance of four methods for each or-
gan using FID scores. The results are shown in Table 2. The
proposed method outperforms other state-of-the-art methods
in kidney, prostate, bladder, colon, and brain images, and
achieved the second-best results for synthesizing breast and
lung images. Fig. 1 shows the results of SIAN across mul-
tiple organs, the color and texture distribution of foreground
nuclei and background stroma are close to the reals.

Meth. Bre. Kid. Pro. Bla. Col. Lun. Bra.
[23] 211.0 197.3 237.5 246.9 239.3 187.5 304.4
[24] 198.0 190.4 235.3 211.4 208.6 195.4 260.3
[25] 260.0 222.1 260.1 278.6 221.8 252.8 278.6
[11] 212.4 187.9 200.4 212.5 222.3 207.2 245.5
SIAN 200.4 173.9 190.2 196.9 204.1 194.6 239.6

Table 2: Performance comparison of image synthesis for
multiple organs using the FID score.

Training Set DQ SQ PQ
MoNuSeg training set 0.704 0.737 0.521
MoNuSeg training set∗ 0.732 0.739 0.538
+pix2pixHD 0.742 0.737 0.544
+Sharp-GAN 0.740 0.739 0.547
+SPADE 0.743 0.738 0.549
+SIAN 0.748 0.742 0.555

Table 3: Performance of SegNet using different training sets.
∗ denotes the training set augmented using traditional aug-
mentation techniques, e.g., flip, rotate, blur. ’+method’ de-
notes applying synthetic augmentation∗ with 5,000 synthetic
images generated from ’method’ to the training set.

3.4. Nuclei segmentation using synthetic images

In this experiment, we evaluate the effectiveness of synthetic
augmentation for training segmentation networks. We train
SegNet [22] with different input configurations (as shown
in Table 3). In experiments, nucleus-like polygons are gen-
erated as the synthetic nuclei instance masks [26], in total
5,000 synthetic instance masks are generated and applied to
produce corresponding semantic, directional, and distance
masks. Then, the pre-trained SIAN is used to apply seven
different style vectors encoded from seven different organs
(around 700 synthetic images per organ) and generate realis-
tic histopathology images. Finally, we test and evaluate the
segmentation performance with the MoNuSeg test set using
DQ, SQ, PQ metrics. We compared the proposed approach to
other methods on synthetic augmentation. Synthetic images
generated from other methods follow their design. As shown
in Table 3, with synthetic training images from pix2pixHD,
Sharp-GAN, and SPADE, the performance of nuclei segmen-
tation could be significantly improved. The proposed SIAN
help generate the best segmentation performance.

4. CONCLUSION

In this paper, we propose the style-guided instance-adaptive
normalization (SIAN) for multi-organ histopathology im-
age synthesis, which integrates instance layouts and encodes
style vectors into a generative network. SIAN synthesizes
histopathology images with styles that align with the image
styles of multiple organs. SIAN utilizes the directional and
distance masks from the nuclei instance maps and generates
clear boundaries for densely-clustered nuclei. With the inte-
gration of the stylization phase, SIAN allows style editing for
synthesizing images of multiple organs. In addition, SIAN
demonstrates its effectiveness in augmenting the training set
and improving the overall performance of a deep learning
model for nuclei segmentation.
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