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Abstract

Classification of breast ultrasound (BUS) images is an essential yet challenging task in computer-aided 

diagnosis systems. Recently, deep learning-based approaches for BUS image classification have 

demonstrated state-of-the-art performance; however, it is difficult to reproduce their results and identify the 

most useful strategies due to the lack of public datasets and method implementations, and inconsistencies 

in the reported evaluation metrics. Therefore, there is a pressing need to develop a benchmark, to objectively 

compare current approaches and gain insights on techniques that improve the generalization of BUS image 

classification. In this work, we build a benchmark for BUS image classification that consists of a large 

public dataset with 3,641 B-mode BUS images, provide open-source code of state-of-the-art approaches, 

and identify the best strategies for deep learning-based BUS classification. Moreover, we propose a novel 

multitask learning approach which incorporates a small-tumor aware network as the backbone network, 

and consists of one primary task (tumor classification) and a secondary task (tumor segmentation). We 

evaluate the proposed approach and 10 deep learning-based approaches using seven quantitative metrics on 

the benchmark dataset. Extensive experiments demonstrate that the proposed approach achieves state-of-

the-art performance with high sensitivity and specificity of 90.4% and 89.8%, respectively.

Keywords: breast ultrasound benchmark; breast cancer detection; deep learning; computer-aided diagnosis
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1. Introduction

Breast cancer has become one of the most common cancers worldwide, accounting approximately for 12% 

of all new cancer cases [1]. In the U.S., it is estimated that breast cancer affected 30% of all new female 

cancer cases in 2021 [1]. Early detection of breast cancer can significantly reduce mortality and expand 

treatment options. Among the different imaging modalities, mammography and ultrasound are the two most 

popular imaging tools for detecting breast abnormality. However, mammography is less commonly 

implemented in most low- and middle-income countries, because of the high costs of the required 

infrastructure [2]. Furthermore, mammography produces high false-positive rates in women with dense 

breasts, which leads to anxiety and additional examination steps, such as biopsy [3]. Rebolj et al. [4] 

reported that ultrasound detected approximately 40% more cancer cases than mammography in women 

with dense breasts. According to [5-9], women with dense breasts have a four to six times greater risk of 

breast cancer than those with fatty breast tissue. Asian women of age < 45 have 1.2 more dense breasts than 

white women of that age, and the ratio increases to 1.6 for age 65 and older. In contrast, black women have 

1.7 more dense breasts than white women for age 65 and younger, while black, Hispanic, and white women 

have a similar breast density for ages>65. [6][7][8][9]

BUS image processing is challenging due to the presence of speckle noise, low contrast, weak 

boundary, and artifacts [10]. Therefore, analyzing ultrasound images requires extensive experience and 

training. To alleviate this challenge, computer-aided diagnosis (CAD) systems have been developed to 

assist radiologists with breast tumor diagnosis. The idea of CAD was first introduced in the 1960s [11]. 

These systems can reduce operator dependency and identify breast tumors/cancers more accurately [12]. 

CADs can be broadly classified into conventional and deep learning-based systems [13]. The conventional 

BUS CAD systems typically comprise four modules: image preprocessing, tumor segmentation, feature 

extraction and selection, and tumor classification [12] (see Fig. 1(a)). In deep learning-based CAD systems, 

the modules of preprocessing [11,12] and segmentation [16,17] become optional (see Fig. 1(b)). Automatic 
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feature learning without human intervention is a substantial advantage of deep learning-based approaches 

over conventional approaches [13]. On the other hand, conventional approaches rely on radiologists’ 

knowledge to extract and select meaningful features [18]. 

Given recent advancements in deep learning approaches for medical image applications, prior work 

demonstrated the effectiveness of deep learning to classify breast tumors in ultrasound images (see Table 

1). However, due to the lack of large, publicly available, high-quality BUS datasets, and unified quantitative 

metrics, a fair evaluation of the current approaches and strategies is impossible. Furthermore, most existing 

deep learning architectures for BUS image classification are simply adopted from general-purpose image 

classification tasks, and there is limited research on identifying the best architectures and strategies of deep 

learning for BUS image classification. In this paper, the focus is on benchmarking deep learning-based 

CAD systems for BUS image classification. Refer to [10] for more details on a BUS benchmark for breast 

tumor segmentation.

The paper is organized as follows. Section 2 discusses the fundamentals of BUS image 

classification using deep learning; Section 3 describes the benchmark setup. Section 4 illustrates the 

proposed approach; Section 5 presents comprehensive experimental results. Finally, Sections 6 and 7 

provide a discussion and conclusion, respectively.

Fig. 1. Key modules in conventional and deep learning-based CAD systems.

                                                               (a) Conventional CAD systems

                        (b) Deep learning-based CAD systems
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References Approaches Year Dataset/Availability  Performance Pretrained
dataset

Huynh, et al. [20] Feature extractor (AlexNet) + SVM 2016 1,125 cases/private AUC: 88% ImageNet

Shia, et al. [25] Fine-tuned (ResNet101) + SVM  2021 2,099/private Sen: 94%, Spec: 93%, 
AUC: 94%

ImageNet

Liang, et al. [21] Feature extractor (Mask-R-CNN) 2019 150 cases/private
163 cases/public

Acc : 80%, TPR: 63%, 
TNR: 87%   

Coco 
datasets

Liao et al. [31]

Fine-tuned (VGG19, ResNet50, 
DenseNet121, Inceptions V3) + 
Elastography images + B-mode 
images 

2020 256/private
AUC:98%, Acc:93%, Sen:91%, 
Spec: 95%, 
F1: 93%

ImageNet

Fei et al. [32] Designed DL network (SVM + 
Elastography) + Transfer learning 2020 265/private Acc:87%, Sen: 86%, Spec: 87%, 

Youden index (YI): 73%
--

Yap et al. [56] Fine-tuned (FCN-AlexNet) 2018 306/private
163/public Sen (Benign:83%, Malignant: 57%) ImageNet

Zhang, et al. [26] Fine-tuned (VGG16, ResNet50, 
InceptionV3, VGG19) 2020 6,007/private

Sen: 85%, AUC: 91%, PPV:64%, 
Acc:83%, 
NPV: 93.7%, Spec: 81.5%

ImageNet

Hijab et al. [23] Fine-tuned (VGG16) + ROIs 2019 1,300/private Acc: 97%, AUC: 98% ImageNet

Cao et al. [24] Fine-tuned (4 ROIs on five 
networks) 2019 1,041/private APR: 97%, ARR:67%, F1:79%, 

Acc: 87.5%
ImageNet

Xie et al. [27] Network design (Dual-sampling (2 
Encoders) network) 2020 1,272/private

163/public
Acc: 92%, Sen: 95%, Spec: 89%, 
PPV:  88%, NPV: 95%, AUC: 94%

ImageNet

Xing et al. [29] Prior knowledge (BI-RADS + CNN) 2020 Training: 9,373/private
Tested: 810/public

AUC: 91%, Acc: 87%, 
Sen: 82%, Spec: 89%,
 Precision: 80%

ImageNet

Zhuang et al. [30] Prior knowledge (hand crafted 
features +SVM +DL) 2021 1,682/public Acc: 93%, Precision: 91%, Sen: 

95%, F1: 93%, Spec: 91%
ImageNet

Han et al. [28] Adopting modified network 
(GoogleNet) +ROIs 2017 7,408/private AUC: 96%, Acc: 91%, Sen:84%, 

Spec: 96%
ImageNet

Al-Dhabyani et al. 
[14]

Data augmentation (GAN to produce 
data) 2019 780/public Acc: 99% ImageNet

Tanaka et al. [57] Ensemble Learning (VGG19 
+ResNet152) 2019 1,543/private

Acc: 86%, Precision: 85%, Sen: 
89%, F1

: 87%, Spec: 83%, AUC:94%

--

Byra et al. [15] Preprocessing (Input Channel) 2019
Training:882/
private
Tested: 163/public

AUC: 94%, Acc: 89%, Sen: 85%, 
Spec: 90%

ImageNet

Zhuang et al. [33] Preprocessing (Decomposition of 
BUS images) 2020 2,280/public AUC: 98%, Acc: 92%, Sen: 98%, 

Spec: 86%, F1: 93%
 ImageNet

Zhang et al. [35] Multitask learning + attention 
mechanism 2021 647/public Acc:94%, Sen: 89%, Spec: 96%, 

F1:93%
--

Moon et al. [58] 
Ensemble learning (BUS + tumor 
masks + segmented tumor + fused 
images) 

2020 647/public
1,687/private

AUC: 95%, Acc:91%, Sen: 97%, 
Spec: 95%, F1: 83%, Precision: 
73%

--

Table 1. Deep learning approaches for BUS image classification.

Acc: Accuracy, AUC: area under curve, Sen: sensitivity, Spec: Specificity, TNR: true negative rate, TPR: true positive rate, PPV: positive 
predictive value, NPV: negative predictive value, APR: average precision rate, ARR: average recall rate,
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2. Fundamentals of BUS image classification using deep learning

2.1 Transfer learning 

Deep learning typically requires large and high-quality labeled data. However, many medical applications 

have scarce data due to expensive data collection, high labeling costs, and privacy issues. To address these 

issues, many approaches have adopted the transfer learning strategy. In transfer learning approaches, a deep 

learning network, which is previously pretrained for another task on a large-scale dataset is employed for 

BUS classification. For example, the ImageNet [19] dataset is widely used by deep learning approaches for 

learning feature representations. The pretrained model can be used as 1) a fixed feature extractor or 2) an 

initial model for fine-tuning.  

For the fixed feature extractor, the pretrained layers are kept unchanged, and the prediction layers 

are trained based on the target task. Huynh et al. [20] employed a pretrained model (AlexNet) as a feature 

extractor and combined it with a support vector machine (SVM) algorithm to classify BUS images by using 

1,125 whole images and 2,393 regions of interest (ROIs). Liang et al. [21] proposed using Mask R-CNN to 

segment and classify breast tumors simultaneously, where a ResNet50 pretrained on the COCO [22] dataset 

was used as a backbone to extract features.

In models for fine-tuning, the whole network including the pretrained layers and the prediction 

layers is retrained using new data. The fine-tuning approach uses the pretrained weights to initialize the 

network, and tune it to a target task. Hijab et al. [23] adopted transfer learning to train VGG16 for classifying 

BUS images. The authors studied three different training techniques, and the results demonstrated that the 

fine-tuned network outperformed both training from scratch and transfer learning without fine-tuning. Cao 

et al. [24] studied breast tumor detection and classification using five models with and without transfer 

learning. Moreover, [25] used a pretrained deep residual network as a feature extractor and a support vector 

machine (SVM) algorithm to classify BUS images, and their classification performance on 2,099 BUS 

images outperformed physicians. Zhang et al. [26] used a balanced training set and compared four 
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pretrained classifiers (InceptionV3, VGG16, ResNet50, and VGG19), and pretrained InceptionV3 with 

fine-tuning outperformed all other three models.

2.2 Network architectures

Developing network architectures based on domain knowledge can enhance the generalizability of deep 

learning-based approaches. Xie et al. [27] proposed the DSCNN to combine convolutional and residual 

layers for BUS image classification. DSCNN outperformed pretrained and fine-tuned AlexNet, ResNet18, 

VGG16, GoogleNet, and EfficientNet, and the three experienced radiologists. Han et al. [28] modified 

GoogleNet with different regions of interest (ROIs) which accepted single-channel images and removed 

two auxiliary classification branches. The proposed approach achieved a sensitivity of 86% and an AUC of 

90% on a private dataset. 

2.3 Incorporating prior knowledge 

Xing et al. [29] integrated BI-RADS information into a three-layer residual network. The proposed 

approach showed promising results and outperformed all other transfer learning and non-transfer learning 

approaches on two public datasets and one private dataset. Zhuang et al. [30] extracted four characteristic 

semantic features (i.e., orientation, characteristics of posterior shadowing region, shape complexity, and 

edge indistinctness) and combined them with computational features learned from VGG16. The proposed 

approach outperformed the general-purpose-designed deep learning approaches. Liao et al. [31] extracted 

computational features using two VGG19 models from B-mode BUS images and strain elastography 

images, respectively; and all features are concatenated and input into a 3-layer network to conduct 

classification. The results showed that the proposed approach can achieve better sensitivity and specificity 

compared to deep learning approaches trained solely on B-mode images. Similarly, [32] transferred 

knowledge from elastography ultrasound through transfer learning to improve the diagnostic accuracy of 

breast cancer. 
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2.4 Preprocessing

The image quality and size of a BUS dataset have a significant impact on deep learning models. Researchers 

have employed a variety of preprocessing techniques to enlarge, standardize, and enhance datasets. Al-

Dhabyani et al. [14] implemented a new augmentation approach by combing generative adversarial 

networks (GANs) with traditional augmentation methods; and the classification accuracy of VGG16, 

Inception, ResNet, and NasNet was improved by 16%, 17%, 16%, and 15%, respectively. Byra et al. [15] 

introduced a matching layer to rescale grayscale BUS images to RGB images. The results showed that this 

technique improved the performance of a pretrained VGG19 network. Zhuang et al. [33] used fuzzy 

enhancement, bilateral filtering, and image morphology operation to produce a set of decomposed images 

which were combined to feature maps using three deep learning models. The approach showed promising 

results, with the specificity and sensitivity reaching 98% and 94%, respectively. 

2.5 Multitask learning

Multitask learning has been proved to be an effective approach to improve the generalizability of deep 

learning approaches by learning shared representations from multiple tasks. Vakanski et al. [34] 

implemented a deep multitask network that comprised both tumor segmentation and classification 

subnetworks, and the performance of tumor classification was significantly improved by learning 

representations focused on tumor regions. Zhang et al. [35] employed soft and hard attention mechanisms 

to perform tumor classification and segmentation simultaneously; and the classification accuracy increased 

by 2.45% compared with the single task model.  Shi et al. [36] proposed the EMT-NET, a light-weighted 

multitask learning approach for both breast tumor classification and segmentation to replace the single task 

MobileNet; and its sensitivity increased by 18.81%.

2.6 Challenges

Conclusively, despite the potential of deep learning approaches for accurately classifying BUS images, 

considerable challenges still need to be addressed: 1) most deep learning approaches require large and high-
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quality labeled datasets, but most publicly available BUS datasets are small. It is time-consuming and 

expensive to collect a large BUS dataset. 2) The end-to-end learning scheme of deep learning approaches 

makes BUS image classification a black box, which leads to poor explainability. 3) Existing deep learning 

approaches have poor robustness and are vulnerable to adversarial attacks. 4) Most deep learning 

approaches are computationally intensive, which makes it impossible to deploy them to devices with limited 

resources. To the best of our knowledge, there is an absence of benchmarking studies focusing on deep 

learning approaches in classifying breast ultrasound images. Therefore, we are introducing a BUS 

benchmark to identify the most useful strategies for classifying breast tumors using a combined dataset of 

3,641 BUS images. 

3. Benchmark setup

This section provides a detailed description of the BUS image datasets, deep learning approaches, 

experimental setup, and evaluation metrics.  

3.1 BUS image dataset

Existing public BUS datasets are small. We prepared a large and diverse BUS dataset from five sources, 

HMSS [37], BUSI [38], BUSIS [10], Thammasat [39], and Dataset B [40]. It contains a total of 3,641 B-

model BUS images, of which 1,854 contain benign tumors and 1,763 have malignant tumors. Detailed 

information on the five datasets is shown in Table 2. We develop a set of scripts to prepare the images 

which are publicly available at http://busbench.midalab.net. Note that we do not own the images, and 

researchers need to obtain permissions to use the datasets from the original authors. 

A total of 2,006 BUS images are from the HMSS [37] dataset, of which 882 images have benign 

tumors and 1,100 have malignant tumors. HMSS was collected by Dr. Geertsma, an experienced radiologist 

at Gelederse Vallei hospital in Netherland, in a collaboration with Hitachi Medical Systems Europe.  BUSI 

[38] dataset was collected from Baheya Hospital for Early Detection & Treatment of Women’s Cancer 

(Cairo, Egypt) using LOGIQ E9 ultrasound system and LOGIQ E9 Agile ultrasound system with the ML6-
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15-D Matrix linear probe transducers. The dataset has a total of 780 images, of which 133 are normal, 437 

are benign, and 210 are malignant. It was collected from 600 women patients aged between 25 and 75 years 

old. We excluded the normal cases, resulting in a total of 647 BUS images. BUSIS [10]  dataset was 

collected from the Second Affiliated Hospital of Harbin Medical University, the Affiliated Hospital of 

Qingdao University, and the Second Hospital of Hebei Medical University using the GE VIVID 7, LOGIQ 

E9, Hitachi EUB-6500, Philips iU22, and Siemens ACUSON S2000 systems. It contains 562 images, of 

which there are 306 benign and 256 malignant images. Thammasat dataset [39] was collected by the 

Biomedical Engineering Unit at the Thammasat University Hospital, and Philips iU22 ultrasound 

workstation was used. We get a total number of 263 (120 benign and 143 malignant) BUS images from the 

Thammasat dataset. Dataset B [40] consists of 163 breast ultrasound images (53 malignant and 110 benign), 

provided by the UDIAT Diagnostic Centre of the Parc Taul´ı Corporation, Sabadell (Spain). The images 

were collected using the Siemens ACUSON Sequoia C512 system with a 17L5 linear array transducer (8.5 

MHz). Refer to the original publications of the datasets for more details.

Because most deep learning approaches require square images as input, all BUS images in the 

benchmark dataset are zero-padded and reshaped to form square images without distortions. Note that 

directly reshaping an original BUS image to a square shape will result in morphologic changes in breast 

tumors and their surrounding tissues. Refer to our scripts for preparing the benchmark dataset. 

BUS dataset BUS images Class distribution Ground truth availability Country

HMSS [37] 2,006 B: 846, M: 1,160 Classification: Yes
Segmentation: No

Netherlands

BUSI [38] 647 B: 437, M: 210 Classification: Yes
Segmentation: Yes

Egypt

BUSIS [10] 562 B: 306, M: 256 Classification: Yes
Segmentation: Yes

China

Thammasat [39] 263 B:120, M: 143 Classification: Yes
Segmentation: No

Thailand

Dataset B [40] 163 B: 109, M: 54 Classification: Yes
Segmentation: Yes

Spain

Total # of images 3,641 Total # of Benign (B): 1,823 (50.06%)
Total # of Malignant (M): 1,818 (49.94%)

Table 2. Five public BUS datasets.
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3.2 Deep learning approaches and setup

In this study, we evaluate seven generic widely used deep learning-based classifiers [41-47] and three 

recently published state-of-the-art approaches [34-36] for BUS image classification (see Table 3). The 

generic approaches include MobileNet V1 [41], EfficientNet [42], DenseNet121 [43], ResNet50 [44], 

VGG16 [45], Xception [46], and InceptionV3 [47]. These classifiers are among the most commonly used 

architectures in medical image applications, thus, providing new insights into their performance will benefit 

the development of CAD systems and the research community. In addition, the approaches range from 

lightweight to heavyweight models, and evaluating them could help build applications with hardware 

limitations. The 5-fold cross-validation is utilized to assess the performance of all approaches. The 

maximum number of training epochs is set to 50, and the batch size is 32. In addition, a validation set that 

comprises 20% of the training set is used, and all BUS images of the benchmark dataset are resized to the 

original classifier's input size. In the benchmark dataset, multiple images may come from one patient/case. 

To prevent data leakage and bias, we split the train and test set based on the cases, i.e., all images from one 

case are assigned to only one of the training, validation, and test sets. 

List of generic deep learning classifiers
Classifiers Number of parameters 

(million)
Size of trained models
(megabytes)

1 MobileNet 4.2 29 MB
2 EfficientNetB0 5.3 37 MB
3 DenseNet121 8 59 MB
4 Xception 22.9 168 MB
5 InceptionV3 23 176 MB
6 ResNet50 25 189 MB
7 VGG16 138.3 172 MB

List of BUS-specific deep learning classifiers
1 Shi, et al. [36] 5.1 60 MB
2 Zhang, et al. [35] 8.2 130 MB
3 Vakanski, et al. [34] 27.3 312.6 MB

Table 3. The sizes of the selected classifiers.
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The approaches are implemented in Keras and TensorFlow using Python (version 3.7) 

programming language. All experiments were performed on a GPU server with seven NVIDIA Quadro 

RTX 8000 GPUs, two Intel Xeon Silver 4210R CPUs (2.40GHz), and 512 GB of RAM. 

3.3 Evaluation metrics

To evaluate the performance of the classifiers, we use the following quantitative metrics: accuracy (Acc), 

sensitivity (Sens), specificity (Spec), F1 score, false positive rate (FPR), false negative rate (FNR), and 

Area Under the Receiver Operating Characteristic Curve (AUC).  

Acc =  
TP +  TN

TP + FP + TN + FN                                                                   (1)

Sens =  
TP

TP + FN                                                                                      (2)

Spec =  
 TN

TN + FP                                                                                      (3)

F1 =  
2 ∙ TP

2 ∙ TP + (FP + FN)                                                                      (4)

FPR =  
FP

FP + TN                                                                                      (5)

FNR =  
FN

FN + TP                                                                                      (6)

In Eqs. (1-6), TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives. 

3.4 Loss functions

We explore three different loss functions to improve the overall performance and identify the best strategy 

that can better balance the sensitivity and specificity for breast cancer detection. The adopted loss functions 

include binary cross-entropy loss, focal loss [48], and weighted cross-entropy loss. The binary cross-

entropy is widely employed in binary classification, and it is defined by
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𝐿𝐵𝐶𝐸 =  ‒
1
N

N

∑
𝑖 = 1

[(𝑡𝑖 ∙ 𝑙𝑜𝑔 (𝑝𝑖) + (1 ‒ 𝑡𝑖) ∙ 𝑙𝑜𝑔 (1 ‒ 𝑝𝑖)]                                    (7)

where N denotes the number of image samples;  is the target label of the ith training sample;  denotes 𝑡𝑖 𝑝𝑖

the prediction. Cross-entropy loss calculates the difference between two probability distributions and all 

classes are treated equally. To reduce the risk of false negatives, we employed the weighted cross-entropy 

function. The normal weighted cross-entropy is given by

𝐿𝑊𝐵𝐶𝐸 =  ‒
1
N

N

∑
𝑖 = 1

[(𝑤𝑧 ∙  𝑡𝑖 ∙ 𝑙𝑜𝑔 (𝑝𝑖) + (1 ‒ 𝑡𝑖) ∙ 𝑙𝑜𝑔 (1 ‒ 𝑝𝑖)]                             (8)

where  is the weight parameter that penalizes the false-negative predictions and could also mitigate the 𝑤𝑧 

issue of imbalanced classes. To avoid overflow issues and produce stable results, we utilized a 

numerically stable weighted cross-entropy which was implemented in [36] and is defined by 

𝐿𝑁𝑆 ‒ 𝑊𝐵𝐶𝐸 =  ‒
1
N

N

∑
𝑖 = 1

((1 ‒ 𝑡𝑖) ∙ 𝑙𝑖 + 𝑠𝑖 ∙ log (1 + 𝑒 ‒ 𝑙𝑖) )                                     (9)

where li is the logits of the predicted probability , and si is from the positive weight coefficient. They 𝑝𝑖

defined as   and  .𝑙𝑖 =  log ( 𝑝𝑖

1 ‒ 𝑝𝑖) 𝑠𝑖 = 1 +  𝑡𝑖 ∙ (𝑤𝑧 ‒ 1)

Furthermore, to focus more on difficult predictions, we utilized the focal loss function [50]. In the 

focal loss, a factor  is added to the cross-entropy loss, where  is a focusing parameter that makes (1 ‒ 𝑝𝑖)𝛾 𝛾

the model focus on hard samples. The focal loss is defined by 

𝐿𝐹𝑜𝑐𝑎𝑙 =  ‒
1
N

𝑁

∑
𝑖 = 1

[(𝛼 ∙  𝑡𝑖 ∙ (1 ‒ 𝑝𝑖)𝛾 ∙ log (𝑝𝑖) + (1 ‒ 𝑡𝑖) ∙ (1 ‒ 𝛼) ∙ 𝑝𝑖 ∙ log (1 ‒ 𝑝𝑖)]   (10)

where  is a weighting factor, and takes values from [0, 1]. We use nine combination of focal loss 𝛼

weights (  = {2, 3, 4}, and  = {0.25, 0.50, 0.8}) and five weights for  (1, 2, 3, 4, and 5). 𝛾 𝛼 𝐿𝑊𝐵𝐶
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4. The proposed method

Multitask learning (joint BUS segmentation and classification) can significantly improve the generalization 

ability of deep learning approaches trained using datasets with limited sizes. The performance of the 

primary task could be improved using better representations regularized by a secondary task. In BUS 

images, tumor categories are determined by features inside or around a tumor; if we could regularize a deep 

neural network to learn representations of tumor regions, a more accurate and robust model could be trained. 

Inspired by this, we propose a new deep multitask network, namely MT-ESTAN, which consists of both 

tumor segmentation and classification tasks. The network architecture is shown in Fig. 2.

In our previous work [16, 17],  small-tumor aware networks were proposed to accurately segment 

tumors with different sizes. [16] used row-column-wise kernels to extract and fuse BUS context information 

at different scales. It consists of two parallel encoder branches: the enhanced small-tumor aware network 

(ESTAN) and basic encoders. In this work, we use the network in [16] as the backbone of MT-ESTAN to 

ensure sensitivity to tumors with different sizes; and ResNet50 is used as the building blocks of the basic 

encoder. Refer to [16] for the implementation details of ESTAN. There are several major differences 

between the proposed MT-ESTAN and our ESTAN in [16]: 1) MT-ESTAN performs tumor classification 

and segmentation simultaneously, and tumor classification is the primary task. ESTAN [16] only has a 

tumor segmentation task; 2) the loss function of MT-ESTAN is a balanced combination between  𝐿𝑁𝑆 ‒ 𝑊𝐵𝐶𝐸

and Dice loss, while ESTAN only has the Dice loss; and 3) the basic encoder was pretrained on ImageNet 

in MT-ESTAN, but trained from scratch in ESTAN.

Segmentation Task. The segmentation task is supplementary to the classification task. The 

segmentation branch comprises four blocks, and each has an upsampling layer and three consecutive 

convolution kernels (see Figs. 2(a) and (c)). Each block receives two skip connections from blocks in the 

two encoders, i.e. a skip connection from the basic encoder and another from the ESTAN encoder. 
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Classification Task. The primary task of the proposed MT-ESTAN is to classify BUS tumors into 

benign and malignant. The classification branch receives input from the combined basic and ESTAN 

encoders. It consists of a Global Average Pooling (GAP) layer followed by two dense layers using ReLU 

activation with 512, and 128 nodes, respectively. A dropout layer with a rate of (50%) is added after the 

first dense layer. The final prediction consists of a single node employing a sigmoid activation function.

 Loss function. In disease diagnosis, the models that produce higher sensitivity are more vital than 

that vice versa. We utilize the weighted cross-entropy loss function for the classification task to perform a 

trade-off between sensitivity and specificity with minimum sacrifice of overall accuracy. A numerically 

stable weighted cross-entropy from [36] is adopted and is defined in Eq. (9). The final multitask loss ( ) 𝐿𝑚𝑡𝑙

function is defined by  

𝐿𝑚𝑡𝑙 = 𝑤 ∙  𝐿𝑁𝑆 ‒ 𝑊𝐵𝐶𝐸 +  𝐿𝐷𝑖𝑐𝑒                                                               (11)

Fig. 2. MT-ESTAN architecture. (a) Overall architecture; (b) the ESTAN block; and (c) the upsampling (Up) 
block. ⨁ denotes the concatenation operator, and A denotes kernel size.
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where the weight (  of the classification task is set to 3, and the positive weight of  is set to 3. 𝑤) 𝐿𝑁𝑆 ‒ 𝑊𝐵𝐶𝐸 

In addition, the best model with the minimum validation loss will be saved during training.

The proposed approach and  [34-36] share the same two tasks. However, two major differences 

exist. 1) [34], [35], and [36] used U-Net, DenseNet, and MobileNet, respectively, as the backbone network. 

The proposed multitask network applies the ESTAN as the backbone, and is more robust to tumors of 

different sizes. 2) [34] and [35] used the cross-entropy function as the loss of the classification loss, and 

have no control on the balance of sensitivity and specificity. For example, [35] obtained high specificity 

but relatively low sensitivity. The proposed network utilizes the numerically-stable weighted cross-entropy 

loss that enables the flexibility to balance sensitivity and specificity. 

5. Experimental results

In this section, we evaluate the proposed approach and 10 deep learning-based approaches for BUS image 

classification using the proposed benchmark dataset. The five most useful strategies in deep learning are 

validated by experiments in Sections 5.1 and 5.2.1; and the effectiveness of the proposed approach is 

validated and discussed in Section 5.2.2. 

5.1 Evaluate useful strategies in deep neural networks for BUS image classification

Training from scratch versus transfer learning. In the transfer learning setup, all classifiers are 

pretrained on ImageNet, and the last prediction layer is replaced with two dense layers with 512 and 64 

units, respectively. ReLU is used as the activation. All model parameters are trainable in the fine-tuning 

stage. For training from scratch, all seven models are trained from scratch using BUS images. Additionally, 

all experiments were conducted without using regularization, augmentation, and postprocessing techniques. 

The results presented in Table 4 show that all seven models with transfer learning outperform those 

with training from scratch. It is worth noting that transfer learning significantly enhances the performance 

of the less complex classifiers with small model sizes. The reason could be that small models are prone to 

underfit when trained from scratch on a limited number of images. For example, the EfficientNetB0 model 

is a lightweight classifier with only 5.3 million parameters, and its accuracy, F1 score, and AUC improved 
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by 19.3%, 12.1%, and 19.5%, respectively. On the other hand, VGG16 is a heavyweight classifier with 138 

million parameters, and its accuracy, F1 score, and AUC improved by 10.1%, 7.8%, and 10.2%, 

respectively. The pretrained VGG16 classifier outperformed all other classifiers by achieving the best F1 

score and AUC. Because transfer learning improves the overall classification performance, it is used in the 

remaining sections. 

Image augmentation. Several augmentation techniques are explored to improve models’ 

generalizability. An optimal augmentation technique should not distort the BUS images, because tumor 

shapes, boundaries, echo patterns, and margins in breast cancer classification are essential in determining 

the tumor type. The classifiers are trained on six different augmentation techniques individually: horizontal 

flip, height shift, width shift, zoom, shear, and rotation. A combination of the four best-performed 

techniques including the horizontal flip, height shift (0.2), width shift (0.2), and rotation (20%), is chosen 

to augment the training set. The results in Table 5 demonstrate that the augmentation combination improves 

the overall performance of DenseNet121, InceptionV3, MobileNet, ResNet50, Xception, and 

Classifiers
Accuracy (%)

 ↑
Sensitivity 

(%) ↑
Specificity 

(%) ↑ F1 ↑ AUC (%) ↑ FPR (%) ↓ FNR (%) ↓

No Aug. Aug.  No Aug. Aug.  No Aug. Aug.  No Aug. Aug.  No Aug. Aug. No 
Aug.  Aug. No 

Aug. Aug.

DenseNet121   73.3       76.9   70.9      72.2   75.9      81.9   0.72     0.76   73.4      77.0   24.1    18.1   29.1    27.8
InceptionV3   71.6       75.7   62.8      73.4   80.5      78.4   0.69     0.75   71.7      75.9   19.5    21.6   37.2    26.6
MobileNet   75.3       77.2   76.9      75.1   74.2      79.6   0.76     0.77   75.5      77.4   25.8    20.4   23.1    24.9
ResNet50   70.3       76.2   79.1      74.0   61.8      78.5   0.73     0.75   70.4      76.3   38.2    21.5   20.9    26.0
VGG16   76.7       76.6   75.8      77.6   77.8      75.8   0.76     0.77   76.8      76.7   22.2    24.2   24.2    22.4
Xception   72.7       76.0   73.0      72.1   72.6      79.9   0.73     0.75   72.8      76.0   27.4    20.1   27.0    27.9

EfficientNetB0  74.0       76.7   73.0      74.0   75.4      79.6   0.74     0.76   74.2      76.8     24.6    20.4   27.0    26.0

Table 5. Augmentation (Aug.) vs. no augmentation (No Aug.).

Classifiers Accuracy 
(%) ↑

Sensitivity 
(%) ↑

Specificity 
(%) ↑ F1  ↑ AUC (%) ↑ FPR (%) ↓ FNR (%) ↓

 S  TL  S  TL    S     TL  S TL  S TL    S TL  S    TL 
DenseNet121   64.8     73.3   69.3    70.9   59.8     75.9   0.66    0.72   64.5    73.4   40.2   24.1   30.7    29.1
InceptionV3   64.5     71.6   69.0    62.8   59.6     80.5   0.66    0.69   64.3    71.7   40.4   19.5   31.0    37.2
MobileNet   61.7     75.3   74.5    76.9   49.1     74.2   0.66    0.76   61.8    75.5   50.9   25.8   25.5    23.1
ResNet50   62.0     70.3   74.2    79.1   50.6     61.8   0.66    0.73   62.4    70.4   49.4   38.2   25.8    20.9
VGG16   68.9     76.7   75.7    75.8   62.2     77.8   0.70    0.76   68.9    76.8   37.8   22.2   24.3    24.2
Xception   63.1     72.7   75.4    73.0   52.1     72.6   0.67    0.73   63.8    72.8   47.9   27.4   24.6    27.0

EfficientNetB0     59.7     74.0   75.6    73.0   43.8     75.4   0.65    0.74   59.7    74.2   56.2   24.6   24.4    27.0

Table 4. Training from Scratch (S) vs. Transfer learning (TL).
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EffienetNetB0 classifiers except for VGG16. This is because the VGG16 without augmentation has less 

overfitting than other approaches, and extra augmented images do not improve its performance 

significantly. The proposed combination of augmentation techniques is utilized for all classifiers to expand 

the dataset size in the remaining experiments. 

Loss functions. As described in section 3.4, the binary cross-entropy loss(LBCE), focal loss [48] 

(LFocal), and weighted cross-entropy loss (LWBCE) are evaluated. Table 6 shows the performance of different 

models with the loss parameter(s) that leads to the best overall and sensitivity values. By utilizing the 𝐿𝑊𝐵𝐶𝐸

, the sensitivity of DenseNet121, InceptionV3, MobileNet, ResNet50, VGG16, Xception, and EfficientNet 

Classifiers Loss Accuracy 
(%) ↑

Sensitivity 
(%) ↑

Specificity 
(%) ↑

F1  
↑

AUC 
(%) ↑

FPR 
(%) ↓

FNR 
(%) ↓

DenseNet121

𝐿𝐵𝐶𝐸 76.9 72.2 81.9 0.76 77.0 18.1 27.8
 ( =4)𝐿𝑊𝐵𝐶𝐸 𝑤𝑧 72.7 90.1 55.7 0.77 72.9 44.3 9.90

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 3, 𝛼 = 0.8) 70.3 88.6 52.6 0.75 70.6 47.4 11.4

InceptionV3

𝐿𝐵𝐶𝐸 75.7 73.4 78.4 0.75 75.9 21.6 26.6
𝐿𝑊𝐵𝐶𝐸(𝑤𝑧 = 3) 71.6 86.8 57.1 0.75 71.9 42.9 13.2

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 2, 𝛼 = 0.8) 68.3 90.3 47.4 0.74 68.8 52.6 9.70

MobileNet

𝐿𝐵𝐶𝐸 77.2 75.1 79.6 0.77 77.4 20.4 24.9
𝐿𝑊𝐵𝐶𝐸(𝑤𝑧 = 3) 74.0 87.6 60.8 0.77 74.2 39.2 12.4

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 3, 𝛼 = 0.8) 72.3 87.2 57.6 0.76 72.4 42.4 12.8

ResNet50

𝐿𝐵𝐶𝐸 76.2 74.0 78.5 0.75 76.3 21.5 26.0
𝐿𝑊𝐵𝐶𝐸(𝑤𝑧 = 3) 72.6 86.2 59.4 0.76 72.8 40.6 13.8

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 3, 𝛼 = 0.8) 71.3 88.3 54.4 0.75 71.4 45.6 11.70

VGG16

𝐿𝐵𝐶𝐸 76.6 77.6 75.8 0.77 76.7 24.2 22.4
𝐿𝑊𝐵𝐶𝐸(𝑤𝑧 = 3) 74.5 86.7 62.6 0.77 74.7 37.4 13.3

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 2, 𝛼 = 0.8) 70.3 90.2 50.9 0.75 70.5 49.1 9.80

Xception

𝐿𝐵𝐶𝐸 76.0 72.1 79.9 0.75 76.0 20.1 27.9
( =3)𝐿𝑊𝐵𝐶𝐸 𝑤𝑧 72.9 88.7 57.7 0.77 73.2 42.3 11.30

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 2, 𝛼 = 0.8) 68.2 91.9 45.1 0.74 68.5 54.9 8.10

EfficientNetB0

𝐿𝐵𝐶𝐸 76.7 74.0 79.6 0.76 76.8 20.4 26.0
( =3)𝐿𝑊𝐵𝐶𝐸 𝑤𝑧 73.8 86.8 61.2 0.77 74.0 38.8 13.2

𝐿𝐹𝑜𝑐𝑎𝑙(𝛾 = 2, 𝛼 = 0.8) 69.6 91.3 48.5 0.75 69.9 51.5 8.70

Table 6. Results of different loss functions. 
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improved by 19.8%, 15.4%, 14.2%, 14.1%, 10.4%, 18.7%, and 14.7%, respectively. Additionally, with the 

Focal loss, the sensitivity has further improved, but the overall performance degrades considerably. For 

example, the sensitivity of InceptionV3 and Xception has increased by 18.7%, and 21.5%, respectively; 

however, the AUC is reduced by 9.3%, and 9.8%, respectively. The best trade-off between sensitivity and 

specificity is achieved by MobileNet and VGG16 when is used. 𝐿𝑊𝐵𝐶𝐸 

Optimizers. We compare three popular optimizers: Adaptive Moment Estimation (ADAM) [49], 

Stochastic Gradient Descent (SGD) with momentum, and Nesterov-accelerated Adaptive Moment 

Estimation (NADAM) [50]. In the experiments, ADAM is applied with a learning rate of 0.00001, SGD 

with a learning rate of 0.002 and momentum of 0.9, and NADAM with a learning rate of 0.00001, beta_1 

of 0.9, beta_2 of 0.999, and epsilon of 1e-08.  All other parameters take default values in Keras.

Classifier         
Optimizer

Accuracy (%) 
↑

Sensitivity (%) 
↑

Specificity (%) 
↑

F1 
↑

AUC (%) 
↑

FPR (%) 
↓

FNR (%) 
↓

DenseNet121
ADAM 72.7 90.1 55.7 0.77 72.9 44.3 9.9

SGD 71.6 89.0 54.8 0.76 71.9 45.2 11.0
NADAM 71.1 87.7 55.0 0.75 71.3 45.0 12.3

InceptionV3
ADAM 71.6 86.8 57.1 0.75 71.9 42.9 13.2
SGD 73.0 88.4 57.6 0.77 73.0 42.4 11.6

NADAM 70.5 86.5 54.6 0.74 70.6 45.4 13.5

MobileNet
ADAM 74.0 87.6 60.8 0.77 74.2 39.2 12.4
SGD 74.0 87.4 61.3 0.77 74.4 38.7 12.6

NADAM 72.4 83.6 61.5 0.75 72.5 38.5 16.4

ResNet50
ADAM 72.6 86.2 59.4 0.76 72.8 40.6 13.8

SGD 70.8 87.6 54.6 0.75 71.1 45.4 12.4
NADAM 70.8 85.2 56.7 0.74 70.9 43.3 14.8

VGG16
ADAM 74.5 86.7 62.6 0.77 74.7 37.4 13.3

SGD 70.2 89.7 51.1 0.75 70.4 48.9 10.3
NADAM 71.5 86.3 57.0 0.75 71.7 43.0 13.7

Xception
ADAM 72.9 88.7 57.7 0.77 73.2 42.3 11.3
SGD 73.7 88.5 59.6 0.77 74.0 40.4 11.5

NADAM 69.1 87.6 50.0 0.74 68.8 50.0 12.4

EfficientNetB0
ADAM 73.8 86.8 61.2 0.77 74.0 38.8 13.2

SGD 73.8 86.2 61.7 0.77 73.9 38.3 13.8
NADAM 72.4 85.1 59.7 0.75 72.4 40.3 14.9

Table 7. Results of different optimizers.
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As shown in Table 7, DenseNet121, ResNet50, VGG16, and EfficientNet classifiers achieved 

better F1 scores and AUC values using the ADAM optimizer. On the other hand, InceptionV3, MobileNet, 

and Xception achieved better results using the SGD optimizers. It is worth mentioning that the optimizers 

have the slightest impact on the generalization performance among all the strategies that we tested.  

DenseNet121 achieved the best sensitivity with 90.1% by using ADAM optimizers, and EfficientNetB0 

attained the lowest sensitivity with 85.1% by using the NADAM optimizer. In addition, the VGG16 using 

Adam and MobileNet using SGD achieved the best AUC by 74.7% and 74.4%, respectively. 

5.2 Multitask learning

The multitask learning approaches need ground truth labels for both tumor class and tumor boundaries, and 

a combined dataset (BUSI and BUSIS) with a total of 1,209 BUS images is used. BUSI and BUSIS are 

chosen because they have accurate annotations for both tumor boundaries and classes. The 5-fold cross-

validation is utilized to evaluate the performance of all approaches. The max epoch is set to 70, and the 

batch size is 32. We optimize all approaches using ADAM [49]. 

5.2.1 The effectiveness of multitask learning using generic deep learning models

 Many previous studies [34-36] have demonstrated the effectiveness of integrating tumor segmentation 

tasks into tumor classification networks. In BUS images, the shared representations between tumor 

classification and segmentation tasks include tumor morphology, size, shape, and echo pattern. We evaluate 

multitask learning networks with five different pretrained (ImageNet) backbone networks, DenseNet121, 

Classifiers Accuracy
 (%) ↑

Sensitivity 
(%) ↑

Specificity 
(%) ↑ F1  ↑ AUC (%) ↑ FPR (%) ↓ FNR (%) ↓

Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi Single Multi

DenseNet121 82.2       85.0 75.3       79.1 87.1       88.9 0.76       0.80 81.2       84.0 12.9       11.1 24.7       20.9

MobileNet 85.1       87.0 78.1        81.1 90.2       91.0 0.81       0.83 84.1       86.1 9.8          9.0 21.9       18.9

ResNet50 85.1        86.1 78.5        80.1 89.2        89.0 0.80        0.81 83.8        85.0 10.7        10.9 21.5        21.3

VGG16 86.1        87.1 81.0        81.3 91.2        90.9 0.82        0.83 86.1        86.1 8.8          9.1 19.0        18.7

EfficientNetB0 84.2        87.5 81.2        81.0 86.9        91.2 0.80        0.83 84.0        86.1 13.1        8.8 18.8        19.0

Table 8. Results of five deep NNs using multitask learning.
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MobileNet, ResNet50, VGG16, and EfficientNetB0. A subnetwork [34] is added to perform breast tumor 

segmentation at the end of the convolutional layers of the backbone network. The subnetwork consists of 

four blocks, each of which contains one upsampling layer, and two consecutive  convolution layers 3 × 3

with batch normalization and ReLU activation. The loss function is a combination of both the Dice loss and 

binary cross-entropy loss. The weight for the binary cross-entropy loss is set to 1.5 by experiments. 

As shown in Table 8, with the additional segmentation task, the overall performance of the five 

approaches can be improved. VGG16, MobileNet, and EfficientNetB0 achieve the best AUC of 86.1% 

among all the approaches. The sensitivity of DenseNet121 is improved by 5%. It is worth noticing that, in 

all approaches, the specificity values are significantly higher compared to the sensitivity values. We 

observed the same outcome in [34] and [35]. This issue could be addressed by choosing the weighted binary 

cross-entropy function. 

5.2.2 The effectiveness of the proposed MT-ESTAN

In this section, we compare the proposed MT-ESTAN with three multitask learning approaches [34-36]. 

We obtained the source code from the authors of [34, 36], and implemented the approach in [35], all model 

parameters were adopted from the papers. 

As shown in Table 9, the AUC of the proposed MT-ESTAN is significantly higher than those of 

[34], [36], and [35], and MT-ESTAN outperforms all approaches reported in Table 8. For example, compare 

to the best performed multitask network (VGG16) in Table 8, the proposed MT-ESTAN improves the 

sensitivity, F1 score, and AUC by 11.2%, 7.3%, and 4.6%, respectively. However, [34-36] are not 

significantly better than the multitask learning approaches reported in table 8. [34-36] achieves high 

Approaches Accuracy
 (%) ↑

Sensitivity 
(%) ↑

Specificity 
(%) ↑ F1  ↑ AUC (%) ↑ FPR (%) ↓ FNR (%) ↓

Zhang, et al. [35] 87.4 81.4 91.4 0.83 86.4 8.6 18.6

Vakanski, et al. [34] 83.6 77.4 87.8 0.78 82.6 12.2 22.5
Shi, et al. [36] 83.9 87.3 81.7 0.80 84.5 18.3 12.6
MT-ESTAN 90.0 90.4 89.8 0.88 90.1 10.2 9.6

Table 9. Results of three multitask learning approaches developed for BUS image classification.
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specificity values, but at the cost of low sensitivity values, which leads to high false negative rates (FNRs 

), e.g., the FNR of [36] is 18.6%. In addition, all multitask learning approaches in have low sensitivity 

values and high FNRs. The proposed MT-ESTAN achieves a better balance between the sensitivity and 

specificity, and has a low FNR of 9.6%.

6. Discussion

The experiments and similar outcomes in [36, 50- 51] demonstrate that the transfer learning (TL) strategy 

consistently outperforms training from scratch for deep learning approaches for BUS image classification, 

which implies that knowledge learned from a different domain (e.g., nature images) could be transferred 

and used to improve BUS image classification. BUS images share common image elements in natural 

images, e.g., object boundaries, image contrast, and texture, and deep neural networks learning the 

representations of those elements from nature images can also contribute to BUS image classification. 

Inspired by this, medical image datasets sharing common features with BUS images could be applied to 

further improve the performance of deep learning approaches for BUS image classification. For example, 

ultrasound images from other organs and breast images from other modalities (e.g., MRI, CT, and 

Mammogram) can be used to pretrain BUS image classifiers. 

Our results and previous studies [14] suggest that image augmentation techniques could improve 

the generalizability of most deep learning approaches for BUS image classification. Augmentation 

techniques introduce variations and enlarge the training set size, and could prevent overfitting [52]; and 

model training using an augmented dataset alleviates the issue of the small size of the medical dataset. To 

further increase the generalizability of deep learning models, the simplest way is to add more images from 

different sources to the model training. The additional images could be either new real BUS images or 

synthetic images generated using algorithms [53].    

Many BUS image classification approaches have achieved promising overall performance (e.g., 

accuracy and F1 score), but failed to balance the sensitivity and specificity. They used the binary cross-

entropy as the loss function and treat cancer and non-cancer cases equally, which makes predictions that 
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favor the dominant class, e.g., benign class, and produce low sensitivities. Sensitivity is the most important 

assessment metric in breast cancer detection because missing malignant cases may risk patients’ lives; and 

a well-balanced model should achieve both high overall performance and high sensitivity.  One solution is 

to utilize the numerically-stable weighted cross-entropy function discussed in Section 3.4 to achieve a better 

balance between the sensitivity and specificity. 

Multitask learning (MTL) is a promising future direction to improve the robustness and 

generalization of deep learning approaches for BUS image classification. Table 8 demonstrates that MTL 

networks with a primary BUS tumor classification task and a secondary segmentation task outperform 

single-task networks with only the classification task. The segmentation task incorporates semantic 

information, i.e., tumor region, during the training, which enables an MTL network to learn meaningful and 

focused representations in tumor regions rather than random features from a whole BUS image. This 

secondary task performs as a regularizer that could also improve models’ convergence using small or 

medium datasets. Inspired by this finding, researchers can further advance BUS image classification by 

incorporating other semantic knowledge, e.g., breast anatomy and BI-RADs descriptors, into MTL 

networks. 

Last but not least, to improve the adoption and trustworthiness of CAD systems for breast cancer 

detection, the explainability of approaches should be improved. Existing deep learning-based methods still 

have a black-box nature in which limited information is provided to help understand the BUS image 

classification process [54-55]. This gap discourages radiologists from using BUS CADs in clinical practice. 

Therefore, solving this gap by introducing explainability into models [54] is a promising direction for BUS 

image classification.

7. Conclusion

In this work, we build a public benchmark for the classification of B-mode BUS images which consists of 

a diverse dataset, useful strategies, and findings for developing deep learning-based approaches, and a novel 

MTL network, MT-ESTAN, for accurate BUS image classification.
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The benchmark dataset comprises 3,641 B-mode BUS images from five countries, and a set of 

public software tools for data preparing and preprocessing. The BUS images were collected with different 

ultrasound devices and patient populations, and have a wide variation in image contrast, brightness, level 

of noise, etc.  We highlight three major findings by evaluating 10 deep learning-based approaches using the 

benchmark dataset: 1) Transfer learning and image augmentation are effective strategies to significantly 

improve the overall performance of deep learning-based BUS image classifiers; 2) the numerically-stable 

weighted cross-entropy loss function offers a better balance between the sensitivity and specificity; 3) MTL 

networks with both the breast tumor segmentation and classification tasks is one of the most useful 

strategies to improve the generalization of deep learning approaches for BUS image classification.

The newly proposed MT-ESTAN incorporates a small-tumor aware network as the backbone 

network, and consists of one primary task (tumor classification) and a secondary task (tumor segmentation). 

The results show that MT-ESTAN achieves state-of-the-art performance, and significantly improved the 

sensitivity of the model. 

In the future, we will be continuously adding more BUS images, new findings, and emerging 

approaches to the benchmark.
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